
Unix kernel Auditing

Ilja van Sprundel <ilja@suresec.org>

Who am I ?

Ilja van Sprundel:
• Employed by Suresec Ltd.
• Breaks stuff for fun and profit
• Working with unix for a few years
• Intrigued by operating system internals

Agenda
• What is unix
• Kernel vs userland
• Why kernels ?
• Bugs

– Buffer overflows
– Signedness problems
– Integer overflows
– Time of check time of use (race conditions)
– Reference counter overflows
– Information leaks
– PANIC !
– Userland interaction bugs
– Dereferencing userdata directly

• Fuzzing the kernel:
– What is fuzzing
– Syscall argument fuzzing
– More detailed argument fuzzing
– Binary file fuzzing
– Some comments on kernel fuzzing

• comments

What is unix

• An operating system based on a set of
standards which define it's behavior

• Resources (memory, disk access, ...)
• Processes
• Threads
• Multi-user
• Mostly written in C, some in C++ (or

parts of it), small parts written in
assembler

Kernel vs user-space

• Privilege levels:
–Most hardware supports different

privilege levels
–Level n can do less then n-1
–Kernel usually runs at the lowest level

(it needs it for various hardware
reasons)

–Userland applications usually run at
the highest level.

Kernel vs user-space II

• The kernel provides services to a
userland application:
–Requesting memory
–Reading a file
–Opening a file
–Making a network connection
–Spawning a new program
–Making a new process
–Many many more ...

• Usually needed because hardware
interaction is required or kernel data
needs to be queried.

Kernel vs user-space III

• Communication between the kernel and
the user-space applications:
– System calls are used
– Usually triggered by a software interrupt
– Each system call has a number
– This number is usually in a register or

pushed on the stack
– Referred to as a mode switch (changing

from user mode to kernel mode)
– List of system calls can usually be found

in
/usr/include/sys/syscall.h

Kernel vs user-space IV

• On x86 linux calling the
exit() system call looks
like:

movl $NR_EXIT, %eax
 # move exit() nr

in eax register
 int $0x80
 # software

interrupt 0x80

void main (void) {
...
exit(0);
}

userspace
kernelvoid exit (int n)

{
...
exit_thread();
...

}

Kernel vs user-space V

• The stack:
–A place to temporarily store data.
–Each user process has a stack.
–For each user process there is a

kernel stack
–A kernel stack is usually very limited

in size (2 or 3 pages) and most data is
stored on the heap somewhere.

Kernel vs user-space VI
• Copying data from and to user-space from and to

kernel-space needs to be handled with special
care:
– Copyin(), copyout(), copy_from_user(), ...
– Verify that the address used exists
– Verify that it is indeed a userpage (and not a

kernel page)
– Verify that it's readable or writable
– Some things are very unix specific

• Some discard negative values, no copy will be
done (Mac OS X, AIX)

• Some will pad with 0bytes (linux)
• Some will just stop copying when an

unmapped page is hit (Most bsd's)
• Most unices have 150-500 system calls
• They have +1000 inputs and outputs

Why kernels ?

• Fun to play with
• Hard to strip down a kernel unlike

userland applications
• Huge programs, so extremely error

prone
• More and more important as people are

deploying all sorts of security solutions
(mostly) designed to protect userland
(grsec, PaX, execshield, argus, ssp, ...)

Bugs: Buffer overflow

• Known for a VERY long time
• Still an issue
• They also exist in the kernel.
• A deadly attack vector
• Allows execution of custom code inside

the kernel (when exploited properly) !

Bugs: buffer overflow II
• Stack-based buffer overflow:

– Too much data gets put in an array on the stack

– Data gets written beyond this array

– Goal is to overwrite sensitive data

– As it turns out a saved instruction pointer is
usually located somewhere after this array

– If something goes wrong, the application WILL
crash

Buffer Sfp eip

Bugs: buffer overflow III
• Stack-based buffer overflow:

– The saved instruction pointer points to the next
instruction to execute when the current function
returns

– When overwritten we can make it point anywhere
in memory

– If we store our own instructions at a known
location we can make eip point to it

Buffer Sfp eip

Bugs: buffer overflow IV
• Stack-based buffer overflow:

– Instructions you want to get
executed is usually referred
to as 'shellcode'

– In userland shellcode will
mostly spawn a shell either
locally or over a network

– Shellcode is nothing more
than some assembly code

– In a lot of cases there are
restricted characters (such as
'\x00')

– work around these restricted
characters

 int kshellcode[] = {
0x3ca0aabb, // lis r5, 0xaabb
0x60a5ccdd, // ori r5, r5, 0xccdd
0x80c5ffa8, // lwz r6, -88(r5)
0x80e60048, // lwz r7, 72(r6)
0x39000000, // li r8, 0
0x9106004c, // stw r8, 76(r6)
0x91060050, // stw r8, 80(r6)
0x91060054, // stw r8, 84(r6)
0x91060058, // stw r8, 88(r6)
0x91070004 // stw r8, 4(r7)

 }

Bugs: buffer overflow
(example)

asmlinkage int solaris_sendmsg(int fd, struct sol_nmsghdr *user_msg, unsigned user_flags) {

 unsigned char ctl[sizeof(struct cmsghdr) + 20];

 unsigned char *ctl_buf = ctl;

 struct msghdr kern_msg;

 ...

 if(msghdr_from_user32_to_kern(&kern_msg, user_msg))

 ...

 if(kern_msg.msg_controllen) {

 struct sol_cmsghdr *ucmsg = (struct sol_cmsghdr *)kern_msg.msg_control;

 unsigned long *kcmsg;

 __kernel_size_t32 cmlen;

 if(kern_msg.msg_controllen > sizeof(ctl) &&

 kern_msg.msg_controllen <= 256) {

 err = -ENOBUFS;

 ctl_buf = kmalloc(kern_msg.msg_controllen, GFP_KERNEL);

 if(!ctl_buf)

 goto out_freeiov;

 }

 ...

 if(copy_from_user(kcmsg, &ucmsg->cmsg_level,kern_msg.msg_controllen - sizeof(__kernel_size_t32)))

Linux sparc64
code

Buffer-
overflow

Copy
user_msg
struct to the
kernel

More buffer overflow stuff

• Shellcode
– Usually not needed, just write it in c,

compile exploit and jump to userland
• Doesn't work on Mac OS X because there is a

full address space split between userspace
and kernelspace

– Calling execve() doesn't work
– What does work:

• Find process structure
• Overwrite uid/gid
• Overwrite additional stuff (if needed)

– Most of the time filter restrictions don't
apply at all (for the shellcode)

No shellcode needed !

/* stolen from linux-2.4.29/include/asm-i386/current.h */
struct task_struct * get_current(void)
{
 struct task_struct *current;
 __asm__("andl %%esp,%0; ":"=r" (current) : "0" (~8191UL));
 return current;
}

int kcode(void) {
 struct task_struct *p;
 p = get_current();
 p = p->p_pptr;
 p->uid = p->euid = p->fsuid = p->suid = 0;
 return -3;
}

Even more buffer overflow
stuff

• Cleaning up after your shellcode is
done
– No need on linux, just let it oops (do

make sure that you got rid of locks)
– In most cases on most unices you can call

something like schedule() in a loop (also
get rid of locks)

– Fix up the stack/heap/whatever you broke
and jump back wherever you need to
jump

• The last approach is for the not-so-lazy

Even more buffer overflow
stuff

• Stack based buffer overflows are
pretty much like those in userland.

• Heap based overflows
– Overwrite memory management

structures
• Can be annoying, in most unices the heap

meta-data and real data are separated
– Carefully control what's on the heap

• Use all sorts of info leaks (/proc/slabinfo, ...)
to figure out what's where on the heap

• Get something with a function pointer
allocated right after the chunk you'll
overflow

• Can be fairly reliable (depends on the bug,
system load, unix type, ...)

Bugs: Signedness problems
• Rather popular since a few years
• Usually important when comparing 2 signed values

(can be both positive and negative)
• Potentially a lot of such bugs in unix kernels.
• illustration: int somesyscall(void *data, int len) {

 char buf[128];
 if (len > 128)
 return(-ETOOLONG);
 if (copyin(data, buf, len)) {
 return(-EFAULT);
 }
 /* do something with the data
*/
 return(0);
}

Bugs: Signedness problems
(example)

static int bluez_sock_create(struct socket *sock, int
proto)
{
 if (proto >= BLUEZ_MAX_PROTO)
 return -EINVAL;
 ...
 return bluez_proto[proto]->create(sock, proto);
}

Compare 2
signed valued
(proto can be
negativeNegative

Indexing !

Linux bluetooth
code

Demonstration

How this bug got fixed

• We mailed Marcel holtmann (maintainer
of the linux bluetooth stack)

• He mailed us back about 20 minutes
later with a fix

• A little while later it got committed to
bitkeeper.

• It can't happen much faster then this !
• Kudos to Marcel !

Bugs: Integer overflow

• Related to signedness issues (they both misuse
integers)

• An integer has a limited domain
• An unsigned 32 bit integer can represent

numbers from 0 to 2**32-1
• When trying to put more into it (additions,

multiplication, substraction (underflow)) the
integer will wrap around and start from 0 again

• In kernel-space this can cause a lot of problems
when calculating buffer space for dynamic
memory

int main(void) {
 u_int32 a = ~0 + 1;
 printf("a: %u\n", a);
}

prints 0 instead of
the expected
4294967296

Bugs: Integer overflow
(example)

static int
vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
struct export_args *argp) {
 register struct netcred *np;
 register int i;
 struct sockaddr *saddr;
 ...
 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
 MALLOC(np, struct netcred *, i, M_NETADDR, M_WAITOK);
 bzero((caddr_t)np, i);
 saddr = (struct sockaddr *)(np + 1);
 if (error = copyin(argp->ex_addr, (caddr_t)saddr, argp->ex_addrlen))
 goto out;
}

Integer
overflow

Mac OS X(FreeBSD,
OpenBSD)

Not enough memory
allocated due to integer
overflow

Heap
overflow

Bugs: Time Of Check Time Of
Use

• Bug occurs when some state is checked
at time x – n

• And used at time n assuming the check
done at time x - n is still valid

• When proper measures (locks, flags,
reference, ...) are not in place this is a
big problem in kernels.

• Sometimes very hard races to win (have
to find a way to get the kernel to block
or schedule so it switches to another
process.)

Bugs: Time Of Check Time Of
Use (example)

asmlinkage long sys32_execve (char *filename,
 unsigned int argv, unsigned int envp, ...) {
 ...
 char **av, **ae;
 int na, ne, len;
 long r;
 na = nargs(argv, NULL);
 ne = nargs(envp, NULL);
 len = (na + ne + 2) * sizeof(*av);
 av = kmalloc(len, GFP_KERNEL);
 ae = av + na + 1;
 av[na] = NULL;
 ae[ne] = NULL;
 r = nargs(argv, av);
 if (r < 0)
 goto out;
 r = nargs(envp, ae);
 if (r < 0)
 goto out;
 ...

static int nargs(u32 src, char **dst){
 int cnt = 0;
 u32 val;
 do {
 int ret = get_user(val, (__u32 *)(u64)
src);
 if (dst) dst[cnt] = (char *)(u64)val;
 src += 4;
 ...
 } while(val);
 if (dst) dst[cnt-1] = 0;
 return cnt;
}

Count number
of arguments

Allocate
x bytes

Overflow
allocated
space

Linux 2.4.x ia64
and X86_64

Reference counter overflows

• Special case of integer overflow
• Certain structures contain reference counters
• To prevent releasing something when it's still in

use
• When a datastructure of this kind is being using

the reference counter gets increased, when it's no
longer being used the reference counter is
decreased.

• Sometimes (mostly in very unlikely error
conditions) reference counters don't get
decreased.

• In such cases its possible to overflow the counter.
• Have 2 references to some datastruct, ref counter

overflow, free 1 of the references, the other one
will now point to a freed piece of kernel memory.

1) fd1 = open(....);

Userspace Kernelspace

Fd1: 3
File struct;
Ref count = 1

2) fd2 = dup(fd1);

Fd1: 3 File struct;
Ref count = 2

Fd2: 4

3) ref_counter_overflow();

Fd1: 3 File struct;
Ref count = 1

Fd2: 4

4) close(fd1);

FREE MEMORYFd2: 4

Reference counter overflows

do_mmap2(unsigned long addr, size_t len,
 unsigned long prot, unsigned long flags,
 unsigned long fd, unsigned long pgoff)
{
 struct file * file = NULL;
 int ret = -EBADF;
 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
 if (!(flags & MAP_ANONYMOUS)) {
 if (!(file = fget(fd)))
 goto out;
 }
 ret = -EINVAL;
 if ((! allow_mmap_address(addr)) && (flags & MAP_FIXED))
 goto out;
 down_write(¤t->mm->mmap_sem);
 ret = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 up_write(¤t->mm->mmap_sem);
 if (file)
 fput(file);
out:
 return ret;
}

Increase
reference
counter

Reference
counter
never gets
decreased

Linux 2.4.x
ppc

Bugs: Information leaks
• Leaking kernel memory to the user
• Could potentially contain useful information (for an

attacker)
• Such as tty buffer, memory from sshd, parts of

/etc/shadow, bits and pieces of the buffer cache, ...
• Information leaks are usually easy to trigger.
• illustration:

#define HOSTNAMELEN 256
char hostname[HOSTNAMELEN];

long gethostname(char *name, int len) {
 if (len > HOSTNAMELEN) {
 len = HOSTNAMELEN;
 }
 copy_to_user(name, hostname, len);
}

Bugs: Information leaks
(example)

static int
ifconf(cmd, data)
 u_long cmd;
 caddr_t data;
{
 struct ifreq ifr, *ifrp;
 ...
 ifrp = ifc->ifc_req;
 for (; space > sizeof (ifr) && ifp; ifp = ifp->if_link.tqe_next)
{
 char workbuf[64];
 int ifnlen, addrs;
 ...
 strcpy(ifr.ifr_name, workbuf);
 ...
 addrs = 0;
 ifa = ifp->if_addrhead.tqh_first;

 for (; space > sizeof (ifr) && ifa;
 ifa = ifa->ifa_link.tqe_next) {
 if (sa->sa_len <= sizeof(*sa)) {
 ifr.ifr_addr = *sa;
 error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
 sizeof (ifr));

Mac OS X
FreeBSD 4.x

Uninitialized
memory

Copy till 0byte,
leave the rest
uninitialized

Copy
everything to
the user

PANIC !

• Calling panic() inside most kernels will
halt the system

• Usually used when the kernel is in an
unrecoverable inconsistent state

• It shouldn't be triggerable from
userland (maybe in debug kernel's ?)

• Only results in a denial of service, but
a pretty effective one. (no cpu hog,
massive stream of packets, ...)

int fpathconf(p, uap, retval)
 struct proc *p;
 register struct fpathconf_args *uap;
 register_t *retval;
{
 int fd = uap->fd;
 struct fileproc *fp;
 struct vnode *vp;
 struct vfs_context context;
 int error = 0;
 short type;
 caddr_t data;
 ...
 if ((error = fp_lookup(p, fd, &fp, 0)))
 return(error);
 type = fp->f_type;
 data = fp->f_data;

 switch (type) {
 ...
 default:
 panic("fpathconf (unrecognized - %d)", type);
 }
 /*NOTREACHED*/
 ...
}

An unkown filetype
will cause a panic

Mac OS X
Old FreeBSD code

Bugs: Userland interaction
bugs

• Sometimes there are bugs which allow
an attacker to modify some resources of
a process.

• Resources: screwed up rlimits, closing
fd 0,1,2, ptrace bugs,

• Requires an suid binary in most cases
(or possibly a kernel thread)

Bugs: Userland interaction
bugs (example)

int dosetrlimit(p, which, limp)
 struct proc *p;
 u_int which;
 struct rlimit *limp;
{
 register struct rlimit *alimp;
 ...
 alimp = &p->p_rlimit[which];
 if (limp->rlim_cur > alimp->rlim_max ||
 limp->rlim_max > alimp->rlim_max)
 if (error = suser(p->p_ucred, &p->p_acflag))
 return (error);
 ...
 switch (which) {
 ...

 case RLIMIT_NOFILE:
 /*
 * Only root can set the maxfiles limits,

 * as it is systemwide resource
 */
 if (is_suser()) {
 if (limp->rlim_cur > maxfiles)
 limp->rlim_cur = maxfiles;
 if (limp->rlim_max > maxfiles)
 limp->rlim_max = maxfiles;
 }
 else {
 if (limp->rlim_cur > maxfilesperproc)
 limp->rlim_cur = maxfilesperproc;
 if (limp->rlim_max > maxfilesperproc)
 limp->rlim_max = maxfilesperproc;
 }
 break;
 ...
 }
}

extern int maxfiles;
extern int maxfilesperproc;
typedef int64_t rlim_t;

struct rlimit {
 rlim_t rlim_cur; /* current (soft) limit */
 rlim_t rlim_max; /* maximum value for
rlim_cur */
};

int
getdtablesize(struct proc *p, void *uap,
 register_t *retval)
{
 *retval =
 min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur,

maxfiles);
 return (0);
}

Rlimits
are
signed

Pass all
checks if
the
rlimit is
negative

Getdtablesize can
return a neg. value

Mac OS X

Bugs: Userland interaction
bugs (example)

• Some explanation
– Rlimits are inherited thru execve()
– An attacker can set the RLIMIT_NOFILE

(maximum open file) to a negative value
– Almost everywhere in the kernel that value

is cast to unsigned (ensuring normal
behavior)

– Getdtablesize() returns that rlimit or the
system maximum whatever is smallest

– A lot of suid binaries used getdtablesize() in
a for loop to close file descriptors right
before they spawn off a userdefined process
(and ofcourse after a privdrop).

More userland interaction
stuff

• /proc/pid/mem
• Procfs is a virtual file system
• Used on many unices
• Makes the address space of a process

readable and writable for other
process thru the use of a virtual file

• Lots of bugs in different
implementations

• See
http://ilja.netric.org/files/kernelhacking/procpidmem.pdf for
more info

More userland interaction
stuff II

• /proc/pid/memis called /proc/pid/as on solaris
(as == address space)

• Imagine the following code being suid:
....
/* open a file without superuser privs */
setreuid(geteuid(), getuid());
fd = open(“/proc/mypid/as”, O_RDWR);
if (fd < 0) exit(0);
setreuid(getuid(), geteuid());
lseek(fd, whereeveryouwant, SEEK_SET);
write(fd, whateveryouwant, somesize);
...

• On solaris open() doesn't fail !!!

Dereferencing user data
directly

• When copying data from or to
userland some verification needs to be
done

• Usually done by functions like copyin
()/copyout()

• Sometimes programmers forget to use
these functions and dereference
pointers given from userspace directly

Dereferencing user data
directly (example)

asmlinkage int
sys_ipc (uint call, int first, int second, int third, void *ptr, long fifth)
{
 int version, err;

 version = call >> 16; /* hack for backward compatibility */
 call &= 0xffff;

 if (call <= SHMCTL)
 switch (call) {
 case SHMAT:
 switch (version) {
 case 0: default:
 case 1: /* iBCS2 emulator entry point */
 err = sys_shmat (first, (char *) ptr, second, (ulong *) third);
 goto out;
 }
 ...

asmlinkage long
sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr){
 ...
 *raddr = (unsigned long) user_addr;
 ...
}

User specified
address

Linux 2.4.x
sparc

Fuzzing the kernel

What is fuzzing

• Using semi-valid data: good enough to
pass initial checks, bad enough so
things might go wrong

• Can be used in a lot of things
• We'll only discuss fuzzing related to

the xnu kernel
• What can you fuzz:

–Syscall arguments
–Binary files the kernel has to

process

Syscall argument fuzzing

• Generate a random syscall number
– Mac OS X also has some negative syscall

nr's !
• All syscalls have at most 8 arguments (special

case: 1 mach syscall has 9 arguments)
• Generate 8 “random” arguments
• “random”:

– Some random number
– A valid userland address

• Get some (random) data on it
– Address of an unmapped page
– Some kernelspace address
– Small negative nr
– ...

More detailed argument
fuzzing

• The previous method is trivial and not detailed at
all, but can be implemented in a matter of minutes

• You can do more detailed syscall fuzzing
• Examples:

– socket() fuzzing
• Once socket is made so al sort of socket

operations on it:
– Setsockopt
– Getsockopt
– Bind
– ...

– Check out Peter Holm's Stresstest suit for the
FreeBSD kernel! (there is a Mac OS X port by
Christian Klein)

More detailed argument
fuzzing (example)

• Linux bluetooth driver NULL pointer dereference:

Binary file fuzzing

• Unintelligent file fuzzing
– Take a valid file
– Randomly modify some bytes
– VERY EASY
– SHOCKING RESULTS

• Intelligent fuzzing
– Can take a while to make something decent
– Need to know specifics of the kind of file

parsing that you're going to fuzz
– Might be hard for closed source kernels

• What can you fuzz with it:
– Mach-o-runtime
– .dmg image file loading

• You should check out Michael Sutton and Adam
Greene's slides from blackhat.

JFS breaks withing seconds

Some comments on kernel
fuzzing

• Finding the actual problem once you
trigger a crash can be hard

• You need to get memory dumps of the
panic'd kernel

• Kernel debugging is useful: Mac OS X
has default gdb stubs for remote
debugging.

• Fuzzing race conditions is possible,
but it's hard

• Figuring out where a race happens
and under what conditions is pure
hell!

Some comments

• This is not a complete list, a lot more
things can (and will) go wrong

• This is meant to give an idea that:
–os designers also make coding

mistakes
–That you don't have to be a c guru to

find bugs in kernels
–All unix kernels have critical security

bugs
• Go out and break a kernel :)
• Better yet, go fix one

Q&A

